

AERO 205 - THERMODYNAMICS											
Course Code	Course Code Course Name Semester										
AERO 205	Thern	nodynamics	Fall 🛛 Spring 🗆 Summer 🗆								
		Credit	ECTS								
Theory		Practice	Lab	2	F						
3		0	0	3	Э						

Course Details	
Department	Aerospace Engineering
Course Language	English
Course Level	Undergraduate 🖂 Graduate 🗆
Mode of Delivery	Face to Face \boxtimes Online \square Hybrid \square
Course Type	Compulsory \boxtimes Elective \square
Course Objectives	To address the basic principles of thermodynamics and give an idea about its use in engineering applications with real-life examples.
Course Content	Basic Concepts; System, surroundings, properties (extensive/intensive), state, process, equilibrium. Properties of Pure Substances; Phases, phase diagrams, property tables (steam/refrigerants). Ideal and Real Gases. Energy; Work and heat. Properties of Pure Substances Phases, phase diagrams, property tables (steam/refrigerants). First Law of Thermodynamics; Energy conservation for closed and open systems (steady-flow systems). Second Law of Thermodynamics; Heat engines, entropy, reversible/irreversible processes. Entropy; Definition and calculation of entropy changes. Thermodynamic Cycles; Power Cycles: Overview of Otto, Diesel, and Rankine cycles. Refrigeration Cycles: Understanding vapor-compression cycles.
Course Method/ Techniques	Lecture \boxtimes Question & Answer \boxtimes Presentation \square Discussion \boxtimes
Prerequisites/ Corequisites	
Work Placement(s)	
Textbook/References/Ma	aterials

- Thermodynamics by YA. Çengel.
- Fundamentals of Classical Thermodynamics, by R. Sonntag, C. Borgnakkeand G. Van Wylen.

FACULTY OF ENGINEERING AERO 205 COURSE SYLLABUS

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	2/4

Course Category									
Mathematics and Basic Sciences		Education							
Engineering	\boxtimes	Science							
Engineering Design		Health							
Social Sciences		Profession							

Weekly Sc	hedule							
No	Topics	Materials/Notes						
1	Introduction	Study basic concepts of thermodynamics and energy, systems and control volumes, phase changes and cycles.						
2	Energy Conversion	Heat and energy transfer, work and energy transfer, the first law of thermodynamics.						
3	Properties of pure substances	Phase change processes, compressed liquid, saturated liquid, saturated steam, superheated steam, saturation temperature and saturation pressure.						
4	Property of phase change	Process diagrams, tables of thermodynamic properties, enthalpy, ideal gas equation of state.						
5	Closed systems energy analysis	Moving boundary work, energy balance, specific heats.						
6	Perfect gases	Internal energy, enthalpy and specific heat, solids and liquids, internal energy, enthalpy and specific heat.						
7	Mass and energy analysis for control volumes	The principle of conservation of mass, energy of heat and fluid flow.						
8	Midterm Exam							
9	Energy analysis of open systems.	Energy analysis of continuous-flow open systems.						
10	Steady-Flow Systems	Study of Some Steady-Flow Systems.						
11	Second Law of Thermodynamics	Reversible and irreversible processes, Carnot cycle, Carnot Cycle applications.						
12	Entropy	Defining entropy, developing entropy change relations, and deriving the increase of entropy principle.						
13	Thermodynamics Cycles	Carnot Vapor Cycle, Rankine Cycle, Reheat Cycle, Combined Gas- Steam Power Cycle.						
14	Air-Standard Diesel Cycle	Brayton Cycle, Vapor and Combined Power Cycles; Carnot Vapor Cycle, Rankine Cycle, Reheat Cycle, Combined Gas-Steam Power Cycle.						
15	Final Exam							

FACULTY OF ENGINEERING AERO 205 COURSE SYLLABUS

Doküman NoMF.FR.003Revizyon Tarihi13.11.2024Revizyon No01Sayfa No3 / 4

Assessment Methods and Criteria									
In-term studies	Quantity	Percentage							
Attendance	14	5%							
Lab									
Practice									
Fieldwork									
Course-specific internship									
Quiz/Studio/Criticize	5	25%							
Homework									
Presentation / Seminar									
Project									
Report									
Seminar									
Midterm Exam	1	30%							
Final Exam	1	40%							
	Total	100%							
Contribution of Midterm Studies to Success Grade		60%							
Contribution of End of Semester Studies to Success Grade		40%							
	Total	100%							

ECTS Allocated Based on Student Workload									
Activities	Quantity	Duration (Hrs)	Total Workload						
Course Hours	14	3	42						
Lab									
Practice									
Fieldwork									
Course-specific Work Placement									
Out-of-class study time	14	4	56						
Quiz/Studio/Criticize	5	2	10						
Homework									
Presentation / Seminar									
Project									
Report									
Midterm Exam and Preparation for Midterm									
Final Exam and Preparation for Final Exam	1	15							
Total Workload	123								
Total Workload / 25	4.92								
ECTS Credit									

FACULTY OF ENGINEERING AERO 205 COURSE SYLLABUS

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	4 / 4

Course Le	arning Outcomes
No	Outcome
L1	Understand fundamental thermodynamic concepts such as open, closed, and isolated systems, the state of a system in equilibrium, and extensive and intensive properties.
L2	Understand properties of pure substances, phase diagrams and phase transitions.
L3	Understand the energy transfer by heat and work.
L4	Be acquainted with energy conservation (First Law of Thermodynamics), increased entropy (Second Law of Thermodynamics) and energy conversion.
L5	Be familiar with energy conversion devices and machines such as compressors, turbines, boilers, heat exchangers, combustion chambers, etc. and their energy balance analysis.
L6	Study thermodynamic cycles and conduct their thermodynamic analysis.

Contribut	Contribution of Course Learning Outcomes to Program Competencies/Outcomes													
Contribution Level: 1: Very Slight, 2: Slight, 3: Moderate, 4: Significant, 5: Very Significant														
	P1	P2	P 3	P4	P5	P6	P7	P8	P9	P10	P11			Total
L1	4	5	5	5	1	5	3	3	2	1	1			35/55; 63.636%
L2	4	5	5	5	1	5	3	3	2	1	1			35/55; 63.636%
L3	4	5	5	5	1	5	3	3	2	1	1			35/55; 63.636%
L4	4	5	5	5	1	5	3	3	2	1	1			35/55; 63.636%
L5	4	5	5	5	1	5	3	3	2	1	1			35/55; 63.636%
L6	4	5	5	5	1	5	3	3	2	1	1			35/55; 63.636%
Total										210/330; 63.636%				