

AERO 307 – SYSTEM DYNAMICS AND CONTROL

Course Code		Course N	Sem	nester	
AERO 307	Syste	m Dynamics and Contro	Fall 🛛 Spring 🗆 Summer		
	•	Credit	ECTS		
Theory	Theory		Lab	2	F
3		0	0	3	5

Course Details					
Department	Aerospace Engineering				
Course Language	English				
Course Level	Undergraduate 🖂 Graduate 🗆				
Mode of Delivery	Face to Face \boxtimes Online \square Hybrid \square				
Course Type	Compulsory \boxtimes Elective \square				
Course Objectives	To provide knowledge on system dynamics, Obtaining the Equations of Motions of combined Mechanical-Electrical-Fluid-Thermal systems. Obtain transfer functions of system. To provide knowledge on control system components To build the understanding of classical control theory and basic controller design methods.				
Course Content	Modeling of physical systems and dynamic equations. Transfer functions and block diagrams. Basics of automatic control. Control operations. Frequency and time response. Stability and Routh-Hurwitz criteria. Root locus. Frequency response methods and Bode diagrams.				
Course Method/ Techniques	Lecture \boxtimes Question & Answer \square Presentation \boxtimes Discussion \square				
Prerequisites/ Corequisites	AERO 204 Dynamics				
Work Placement(s)					
Textbook/References/Materials					
 Ogata, K., "Modern C Nise, N. S., "Control 	Control Engineering", 5th Edition, Prentice-Hall, 2010. Systems Engineering", 6th Edition, Addison-Wesley, Menlo Park, CA, 2010.				

 Kuo, B. C., Golnaraghi, F., "Automatic Control Systems", 8th Edition, Prentice-Hall, Englewood Cliffs, 2002

• Ercan, Y., Mühendislik Sistemlerinin Modellenmesi ve Dinamiği, 2. Baskı, Literatür Yayınevi, İstanbul, 2003. ISBN: 9789750401077

Doküman NoMF.FR.003Revizyon Tarihi20.11.2024Revizyon No01Sayfa No2 / 5

Ercan, Y., Klasik ve Modern Kontrol sistemleri Tasarımı, 1. Baskı, Ankara, 2022							
Course Category							
Mathematics and Basic Sciences	\boxtimes		Education				
Engineering	\boxtimes		Science				
Engineering Design	\boxtimes		Health				
Social Sciences			Profession				

Weekly Schedule						
No	Topics	Materials/Notes				
1	Introduction to System Dynamics and Control Systems					
2	Mathematical modelling of physical systems and dynamic equations (Mechanical, Hydrolic, Electrical, Thermal Systems)					
3	Mathematical modelling of physical systems and dynamic equations (Mechanical, Hydrolic, Electrical, Thermal Systems)					
4	Mathematical modelling of physical systems and dynamic equations (Mechanical, Hydrolic, Electrical, Thermal Systems)					
5	Laplace Transform Transfer functions of multiple input and multiple output systems.					
6	Block diagrams. Obtaining transfer functions from block diagrams Structure of feedback control systems. Desired characteristics of control systems					
7	Control System Components, Stability of control systems. Stability and system poles. Relative stability and stability margin.					
8	Midterm Exam					
9	Transient response specifications and their use in analysis and design of 2nd order systems.					
10	Steady state response. Steady state error and error constants.					
11	Controller and control actions. Proportional (P), integral (I), derivative (D) control actions. P, I, P+D, P+I and P+I+D control. Industrial controllers					
12	Root locus method. Examples of root locus diagrams method.					
13	Frequency response method. Graphical representations of frequency response.					
14	Control system design by root locus method and frequency response method					
15	Final Exam					

Doküman No	MF.FR.003
Revizyon Tarihi	20.11.2024
Revizyon No	01
Sayfa No	3 / 5

Assessment Methods and Criteria							
In-term studies	Quantity	Percentage					
Attendance	14						
Lab							
Practice							
Fieldwork							
Course-specific internship							
Quiz/Studio/Criticize							
Homework	4	20%					
Presentation / Seminar							
Project							
Report							
Seminar							
Midterm Exam	1	30%					
Final Exam	1	50%					
	Total	100%					
Contribution of Semester Studies and Midterm to Success Grade		50%					
Contribution of End of Semester Studies to Success Grade		50%					
	Total	100%					

ECTS Allocated Based on Student Workload							
Activities	Quantity	Duration (Hrs)	Total Workload				
Course Hours	14	3	42				
Lab							
Practice							
Fieldwork							
Course-specific Work Placement							
Out-of-class study time							
Quiz/Studio/Criticize							
Homework	4	10	40				
Presentation / Seminar							
Project							
Report							
Midterm Exam and Preparation for Midterm	1	20	20				
Final Exam and Preparation for Final Exam	1	20	20				
Total Workload	122						
Total Workload / 25	4.88						
ECTS Credit	5						

Doküman NoMF.FR.003Revizyon Tarihi20.11.2024Revizyon No01Sayfa No4 / 5

Course Lea	arning Outcomes
No	Outcome
L1	Modelling to combined physical system
12	Devivating the mathematical model (differential Equation) of dynamic system according to IO
LZ	relation
L3	Applying Laplace transform
L4	Obtaning to transfer function (TF)
L5	Using the Control System Toolbox software
L6	Represent system in different style such as Block diagram, diffEq, TF, state space
L7	Analyse of the stability of a system by investigating eigen values
18	Understanding the component of Control System and obtaining the mathematical model of
LO	component
19	Learn the performance metrics of dynamic systems by investigating the transient response and
L9	steady state response
L10	Principles of control action: on-off control, PID control
L11	Learn drawing of Root Locus and meaning of it
112	Control System Desing understanding by using Root Locus Methods in term of performance
LIZ	metrics relation
L13	Learn drawing of Bode Plot and meaning of it
L14	Control System Desing understanding by using FRF

Contribution of Course Learning Outcomes to Program Competencies/Outcomes															
Contribution Level: 1: Very Slight, 2: Slight, 3: Moderate, 4: Significant, 5: Very Significant															
	P1	P2	P3	P4	Р5	P6	P7	P8	P9	P10	P11				Total
L1	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L2	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L3	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L4	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L5	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L6	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L7	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L8	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L9	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L10	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L11	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L12	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L13	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
L14	5	5	5	5	2	5	4	3	2	1	3				40/55; 72,7%
										•		-	То	tal	560/770; 72,7%

Doküman No	MF.FR.003
Revizyon Tarihi	20.11.2024
Revizyon No	01
Sayfa No	5 / 5