

Г

AERO 309 – MECHANICAL VIBRATIONS										
Course Code Course Name Semester										
AERO 309	Mecha	Mechanical Vibrations Fall 🛛 Spring 🗆 Summer								
		Hours		Credit	ECTS					
Theory		Practice	Lab	2	F					
3		0	0	3	5					

Course Details	
Department	Aerospace Engineering
Course Language	English
Course Level	Undergraduate 🖂 Graduate 🗆
Mode of Delivery	Face to Face 🛛 Online 🗆 Hybrid 🗆
Course Type	Compulsory \boxtimes Elective \square
Course Objectives	This course equips students with the concepts of intermediate structural dynamics and educates them to apply this knowledge in the solution of problems related to the vibrations of Aerospace Structures. It also provides the knowledge of vibration behavior of lumped parameter and continuous systems and their characteristics. To provide knowledge about vibration isolation.
Course Content	 Free and forced vibrations of single degree-of-freedom undamped linear systems. Types and characteristics of damping and its effects on the response. Two degree-of-freedom systems. Coordinate transformation. Coupling. Free vibration, response to harmonic excitation. Multi degree-of-freedom systems. Eigenvalue problem, modal vectors and orthogonality. Vibration of continuous systems. Transverse vibration of beams. Effects of boundary conditions on the response. Vibration measurement and isolation.
Course Method/ Techniques	Lecture \boxtimes Question & Answer \square Presentation \square Discussion \square
Prerequisites/ Corequisites	
Work Placement(s)	
Textbook/References/	Materials

FACULTY OF ENGINEERING AERO 309 COURSE SYLLABUS

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	2/4

- Rao SS, () Roseau, M. (2012). Vibrations in mechanical systems: analytical methods and applications. Springer Science & Business Media
- Inman, D.J. (2001). Engineering Vibration. New Jersey: Prentice Hall
- Meirovitch, L. (1967). Analytical Methods in Vibrations. New York: McMillan

Course Category									
Mathematics and Basic Sciences	\boxtimes	Education							
Engineering	\boxtimes	Science							
Engineering Design	\boxtimes	Health							
Social Sciences		Profession							

/eekly Sc	hedule	
No	Topics	Materials/Notes
1	INTRODUCTION: A brief history of mechanical vibrations, the importance of studying mechanical vibrations, basic concepts of vibrations; vibration, basic elements of vibrations.	1
2	CLASSIFICATION of VIBRATIONS and VIBRATION ANALYSIS PROCEDURE: Forced and free vibrations, damped and undamped vibrations, linear and nonlinear vibrations; Spring element, mass or inertia element, damping element, mass element, harmonic motion, analysis of harmonic motion.	1
3	VIBRATION of SINGLE DEGREE of FREEDOM SYSTEMS: Motion equation of a single degree of freedom undamped free system, solution of the motion equation.	2
4	DAMPED VIBRATIONS: Single degree of freedom damped free systems, logarithmic decrement, vibration of dry friction systems.	2
5	FORCED VIBRATIONS: Motion equation and solution of forced harmonic undamped vibrations, beating, resonance, and natural frequency.	3
6	FORCED VIBRATIONS: Harmonic excitation of a damped system, response of a damped system to a general excitation, convolution integral, response spectrum.	3
7	VIBRATION OF TWO-DEGREE-OF-FREEDOM SYSTEMS: derivation, solution, and interpretation of the motion equation for an undamped two-degree-of-freedom system.	5
8	Midterm Exam	
9	NATURAL FREQUENCIES AND MODE SHAPES: Coordinate coupling and natural coordinates, coordinate transformation, vibration modes. Vibrations of semi-definite systems stability, sample application study.	5
10	VIBRATION OF MULTI-DEGREE OF FREEDOM SYSTEMS: An overview of the vibration of multi-degree of freedom systems,	6
11	VIBRATION OF MULTI-DEGREE OF FREEDOM SYSTEMS:	6

FACULTY OF ENGINEERING AERO 309 COURSE SYLLABUS

Doküman NoMF.FR.003Revizyon Tarihi13.11.2024Revizyon No01Sayfa No3 / 4

	Modal Analysis,	
12	VIBRATIONS OF CONTINUOUS SYSTEMS:	8
	Axial and lateral vibrations of beams.	0
13	VIBRATIONS OF CONTINUOUS SYSTEMS:	0
	Axial and lateral vibrations of beams.	8
14	VIBRATION ISOLATION: Passive isolation methods; Operation of the dynamic vibration absorber, undamped dynamic absorber, damped dynamic absorber.	5,9
15	Final Exam	

Assessment Methods and Criteria									
In-term studies	Quantity	Percentage							
Attendance	14								
Lab									
Practice									
Fieldwork									
Course-specific internship									
Quiz/Studio/Criticize									
Homework	4	20%							
Presentation / Seminar									
Project									
Report									
Seminar									
Midterm Exam	1	30%							
Final Exam	1	50%							
	Tota	al 100%							
Contribution of Midterm Studies to Success Grade		50							
Contribution of End of Semester Studies to Success Grade		50							
	Tota	al 100%							

ECTS Allocated Based on Student Workload								
Activities	Quantity	Duration (Hrs)	Total Workload					
Course Hours	14	3	42					
Lab								
Practice								
Fieldwork								
Course-specific Work Placement								
Out-of-class study time								
Quiz/Studio/Criticize								
Homework	4	8	32					
Presentation / Seminar								
Project								
Report								

FACULTY OF ENGINEERING AERO 309 COURSE SYLLABUS

Doküman NoMF.FR.003Revizyon Tarihi13.11.2024Revizyon No01Sayfa No4 / 4

Midterm Exam and Preparation for Midterm	1	20	20
Final Exam and Preparation for Final Exam	1	30	25
Total Workload			119
Total Workload / 25		4.77	
ECTS Credit			5

Course Lo	Course Learning Outcomes								
No	Outcome								
L1	Obtains the equations of motion of single-degree-of-freedom systems.								
L2	Obtaning natural frequency with different method (energy, static deflection, from solution of EoM)								
L3	Detailed insight about damping types (viscous, frictional, hysteretic).								
L4	Understands free and forced (especially harmonic exitation) vibrations of single-degree-of- freedom systems.								
L5	Obtaining to total response of single-degree-of-freedom systems.								
L6	Analyzes free vibrations of multi-degree-of-freedom systems.								
L7	Applying Modal Analysis								
L8	Modelling and understanding of continuous system vibrations and mode shapes								
L9	Understanding of vibration isolation techniques								

Contribut	Contribution of Course Learning Outcomes to Program Competencies/Outcomes													
Contributi	Contribution Level: 1: Very Slight, 2: Slight, 3: Moderate, 4: Significant, 5: Very Significant												-	
	P1	P2	P 3	P4	P5	P6	P7	P8	P9	P10	P11			Total
L1	5	5	5	5	2	5	4	3	2	1	3			40/55; 72,7%
L2	5	5	5	5	2	5	4	3	2	1	3			40/55; 72,7%
L3	5	5	5	5	2	5	4	3	2	1	3			40/55; 72,7%
L4	5	5	5	5	2	5	4	3	2	1	3			40/55; 72,7%
L5	5	5	5	5	2	5	4	3	2	1	3			40/55; 72,7%
L6	5	5	5	5	2	5	4	3	2	1	3			40/55; 72,7%
L7	5	5	5	5	2	5	4	3	2	1	3			40/55; 72,7%
L8	5	5	5	5	2	5	4	3	2	1	3			40/55; 72,7%
L9	5	5	5	5	2	5	4	3	2	1	3			40/55; 72,7%
	1	1						1	1		I		Total	360/495; 72,7%