

		<course code=""></course>	- <course n<="" th=""><th>IAME></th><th></th></course>	IAME>		
Course Code		Course Na	Semester			
MATH 102	Engine	eering Mathematics II	Fall 🗆 Spring 🛛 Summer 🗆			
		Hours		Credit	ECTS	
Theory	Theory Practice		Lab			

Course Details	
Department	
Course Language	English
Course Level	Undergraduate 🖂 Graduate 🗆
Mode of Delivery	Face to Face \boxtimes Online \square Hybrid \square
Course Type	Compulsory \boxtimes Elective \square
Lecturer (s)	
Course Objectives	The aim of this course is to build the mathematical infrastructure that a student will need by teaching theoretically and practically the basic concepts and subjects of mathematics that a student should use in engineering faculty department courses, and at the same time, to help the student see the big picture
Course Content	Trancendental functions, Integration techniques, Infinite series and sequences, Parametric equations and Polar coordinates, Partial Derivatives, Multiple Integrals
Course Method/ Techniques	Lecture \boxtimes Question & Answer \boxtimes Presentation \square Discussion \square
Prerequisites/ Corequisites	Engineering Mathematics I

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman NoMF.FR.003Revizyon Tarihi13.11.2024Revizyon No01Sayfa No2 / 5

Work Placement(s)

Textbook/References/Materials

Textbook(s): G.B Thomas, J. Hass, M.D.Weir, C. Heil, *Thomas' Calculus*, 14th Edition, (Pearson Global Edition) R.A. Adams, *Calculus*: A complete course 8-th revised ed., Prentice Hall, 2013. J. Stewart, *Calculus*, Metric Version, Eighth Edition, 2016, Cengage Learning References:

• Materials:

Course Category			
Mathematics and Basic Sciences	\boxtimes	Education	
Engineering	\boxtimes	Science	\boxtimes
Engineering Design	\boxtimes	Health	\boxtimes
Social Sciences		Profession	

Weekly Sc	Weekly Schedule							
No	Topics	Materials/Notes						
1	Techniques of Integration							
2	Techniques of Integration							
3	Infinite Sequences and Series							
4	Infinite Sequences and Series							
5	Parametric Equations and Polar Coordinates							
6	Parametric Equations and Polar Coordinates							
7	Vectors and the Geometry of Space							
8	Midterm Exam							
9	Vector Valued Functions and Motion in Space							
10	Partial Derivatives							
11	Partial Derivatives							
12	Multiple Integrals							
13	Multiple Integrals							
14	Integrals and Vector Fields							
15	Integrals and Vector Fields							
16	Final Exam							

Assessment Methods and Criteria							
In-term studies	Quantity	Percentage					
Attendance	-	-					
Lab	-	-					
Practice	-	-					
Fieldwork	-	-					
Course-specific internship	-	-					

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman NoMF.FR.003Revizyon Tarihi13.11.2024Revizyon No01Sayfa No3 / 5

Quiz/Studio/Criticize	_	_
• • •	-	
Homework	-	-
Presentation / Seminar	-	-
Project	-	-
Report	-	-
Seminar	-	-
Midterm Exam	1	40
Final Exam	1	60
	Tot	al 100%
Contribution of Midterm Studies to Success Grade	1	40
Contribution of End of Semester Studies to Success Grade	1	60
	Tot	al 100%

ECTS Allocated Based on Student Workload							
Activities	Quantity	Duration (Hrs)	Total Workload				
Course Hours	16	4	64				
Lab	-	-	-				
Practice	-	-	-				
Fieldwork	-	-	-				
Course-specific Work Placement	-	-	-				
Out-of-class study time	16	3	48				
Quiz/Studio/Criticize	-	-	-				
Homework	-	-	-				
Presentation / Seminar	-	-	-				
Project	-	-	-				
Report	-	-	-				
Midterm Exam and Preparation for Midterm	1	15	15				
Final Exam and Preparation for Final Exam	1	20	20				
Total Workload			147				
Total Workload / 25							
ECTS Credit							

Course Lo	earning Outcomes
No	Outcome
L1	Evaluate integrals using techniques of integration, such as substitution, inverse
	substitution, partial fractions and integration by parts.
L2	Determine convergence/divergence of improper integrals, and evaluate convergent
LZ	improper integrals
L3	Estimate and compare series and integrals to determine convergence
L4	Graph polar coordinate equations
L5	Sketch the graph of surfaces in the three-dimensional coordinate systems
LS	Take the derivative of functions with several variebles.

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	4 / 5

Evaluate double integrals over rectangles. Evaluate triple integrals over rectangles.

Contribut	tion Lev	el: 1:	Very S	light, 2	2: Sligi	ht, 3: I	Moder	ate, 4:	Signi	ficant,	5: Vei	ry Sigi	nificant	L		
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11					Total
L1																
L2																
L3																
L4																
L5																
					•					L				Тс	otal	

i. Sufficient knowledge in the fields of mathematics, natural sciences, and related engineering disciplines; the ability to apply theoretical and practical knowledge in solving complex engineering problems.

ii. The ability to identify, formulate, and solve complex engineering problems; the ability to select and apply appropriate analysis and modeling methods for this purpose.

iii. The ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; the ability to apply modern design methods for this purpose.

iv. The ability to select and use modern techniques and tools required for the analysis and solution of complex problems encountered in engineering applications; the ability to effectively use information technologies.

v. The ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for the investigation of complex engineering problems or discipline-specific research topics.

vi. The ability to work effectively in intra-disciplinary and multidisciplinary teams; the ability to work independently.

vii. The ability to communicate effectively both orally and in writing; proficiency in at least one foreign language; the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and understandable instructions.

viii. Awareness of the necessity of lifelong learning; the ability to access information, track developments in science and technology, and continuously renew oneself.

ix. Acting in accordance with ethical principles, knowledge of professional and ethical responsibilities, and the standards used in engineering applications.

x. Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.

xi. Knowledge of the impact of engineering practices on health, environment, and safety at global and societal levels, and awareness of contemporary engineering issues; awareness of the legal consequences of engineering solutions.