

CHEM 101 - ENGINEERING CHEMISTRY							
Course Code	Code Course Name Semester						
CHEM 101	ENGI	NEERING CHEMISTRY	Fall 🛛 Spring 🗆 Summer 🗆				
Hours Credit ECTS							
Theory Practice Lab				2	4		
3 0 1				3	4		

Course Details	
Department	Nanotechnology Engineering
Course Language	English
Course Level	Undergraduate 🖂 Graduate 🗆
Mode of Delivery	Face to Face \boxtimes Online \square Hybrid \square
Course Type	Compulsory \boxtimes Elective \square
Course Objectives	The aim of this course is to provide engineering students with a solid foundation in the basic concepts of general chemistry, equipping them with the necessary skills to analyze and solve problems involving chemical principles relevant to engineering.
Course Content	Basic concepts of matter and atomic theory; chemical compounds and reactions; stoichiometry; gas laws; thermochemistry; atomic structure and periodic table; chemical bonding and molecular geometry; intermolecular forces and electrochemistry. Simulations, animations, and thought experiments are also integrated to enhance conceptual understanding and critical thinking.
Course Method/ Techniques	Lecture \boxtimes Question & Answer \boxtimes Presentation \boxtimes Discussion \boxtimes
Prerequisites/ Corequisites	No
Work Placement(s)	No

Doküman Kodu	MF.FR.003
Yayın Tarihi	06.09.2024
Revizyon No	26.06.2025
Revizyon Tarihi	02
Gizlilik Sınıfı	Hizmet içi

Textbook/References/Materials

Main Textbook:

Petrucci, R.H., Herring, F.G., Madura, J.D., Bissonnette, C. (General Chemistry: Principles and Modern Applications), Pearson Education.

Supplementary References:

- Zumdahl, S.S., Zumdahl, S.A. (Chemistry)
- Chang, R., Goldsby, K. (Chemistry) Atkins, P., Jones, L. (Chemical Principles)

Course Category							
Mathematics and Basic Sciences			Education				
Engineering	\mathbb{X}		Science				
Engineering Design			Health				
Social Sciences			Profession				

Weekly Schedule						
No	Topics	Materials/Notes				
1	Introduction : Why do we need to take this course? Matter and Its Properties, Atomic Theory	Chapters 1–2				
2	Chemical Compounds & Reactions : Molecular, Ionic, Organic Compounds; Types of Reactions	Chapters 3–4				
3	Reactions in Aqueous Solutions I : Precipitation, acid- base, redox reactions	Chapter 5				
4	Reactions in Aqueous Solutions II : Solution stoichiometry, concentration calculations	Chapter 5				
5	Gases I: Gas laws and ideal gas behavior	Chapter 6				
6	Gases II: Kinetic molecular theory, real gases	Chapter 6				
7	Thermochemistry : Heat, work, first law of thermodynamics	Chapter 7				
8	Midterm Exam					
9	Electrons in Atoms : Quantum theory, electron configuration	Chapter 8				
10	The Periodic Table & Atomic Properties: Periodicity, trends in properties	Chapter 9				
11	Chemical Bonding I : Ionic and covalent bonding, Lewis structures	Chapter 10				
12	Chemical Bonding I (continued): Bond polarity, formal charges	Chapter 10				
13	Chemical Bonding II : Molecular geometry, VSEPR, hybridization	Chapter 11				
14	Intermolecular Forces: Properties of liquids and solids	Chapter 12				
15	Electrochemistry : Galvanic cells, Nernst equation, applications	Chapter 19				
16	Final Exam					

Assessment Methods and Criteria						
In-term studies	Quantity		Percentage			
Attendance						
Lab	4		15			
Practice						
Fieldwork						
Course-specific internship						
Quiz/Studio/Criticize	1		5			
Homework						
Presentation / Seminar						
Project						
Report						
Seminar						
Midterm Exam	1		30			
Final Exam	1		50			
		Total	100%			
Contribution of Midterm Studies to Success Grade	50		50			
Contribution of End of Semester Studies to Success Grade	50		50			
		Total	100%			

ECTS Allocated Based on Student Workload							
Activities	Quantity	Duration (Hrs)	Total Workload				
Course Hours	14	3	42				
Lab	4	1	4				
Practice							
Fieldwork							
Course-specific Work Placement							
Out-of-class study time	14	2	28				
Quiz/Studio/Criticize	1						
Homework							
Presentation / Seminar							
Project							
Report							
Midterm Exam and Preparation for Midterm	1	10	10				
Final Exam and Preparation for Final Exam	16						
Total Workload	100						
Total Workload / 25	100/25						
ECTS Credit	4						

Cour	se Learning Outcomes
No	Outcome
L1	Learning the basic concepts of the general chemistry.
L2	Solving problems about the basic concepts.
L3	Being able to write experiment reports for a deeper understanding.
L4	Understanding the submicroscopic nature of chemistry by simulations and animations.
L5	Arguing the thought experiments so to become critical thinkers which is a basic need for engineering education.

Con	Contribution of Course Learning Outcomes to Program Competencies/Outcomes											
Cont	Contribution Level: 1: Very Slight, 2: Slight, 3: Moderate, 4: Significant, 5: Very Significant											
	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	Total
L1	5	4	1	2	1	1	1	3	1	1	2	22%
L2	5	5	2	3	2	1	1	3	1	1	2	26%
L3	4	4	2	3	4	2	4	3	2	1	3	32%
L4	5	4	2	4	3	1	1	3	1	1	3	28%
L5	4	5	3	3	2	2	2	4	2	2	3	32%
											Total	140

Program Outcomes

i. Adequate knowledge in mathematics, science and subjects specific to Engineering; ability to use theoretical and applied knowledge in these areas in complex engineering problems.

ii. Ability to identify, formulate and solve complex engineering problems; ability to select and apply appropriate analysis and modelling methods for this purpose.

iii. Ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; ability to apply modern design methods for this purpose.

iv. Ability to develop, select and use modern techniques and tools required for the analysis and solution of complex problems encountered in engineering practice; ability to use information technologies effectively.

v. Ability to design and conduct experiments, collect data, analyse and interpret results in order to investigate complex engineering problems or research topics.

vi. Ability to work effectively in disciplinary and multidisciplinary teams; ability to work individually.

vii. Ability to communicate effectively in oral and written Turkish; knowledge of at least one foreign language; ability to write effective reports and understand written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.

viii. Awareness of the necessity of lifelong learning; the ability to access information, to follow developments in science and technology and to continuously renew oneself

	FACULTY OF ENGINEERING COURSE SYLLABUS FORM	Doküman Kodu Yayın Tarihi Revizyon No Revizyon Tarihi	MF.FR.003 06.09.2024 26.06.2025 02
A N K A R A		Gizlilik Sınıfı	Hizmet içi

ix. Acting in accordance with ethical principles, professional and ethical responsibility awareness; knowledge of standards used in engineering applications.

x. Knowledge about business life practices such as project management, risk management and change management; awareness of entrepreneurship, innovation; knowledge about sustainable development.

xi. Knowledge about the effects of engineering applications on health, environment and safety in universal and social aspects and the problems of the age reflected in the field of engineering; awareness of the legal implications of engineering solutions