

EEE201 – ELECTRICAL CIRCUITS I										
Course Code	ourse Code Course Name Semester									
EEE201	Electr	ical Circuits I	Fall 🛛 Spring 🗆 Summer 🗆							
		Credit	ECTS							
Theory 4		Practice	Lab	4	F					
		0	0	4	5					

Course Details	
Department	Electrical and Electronics Engineering
Course Language	English
Course Level	Undergraduate 🖂 Graduate 🗆
Mode of Delivery	Face to Face ⊠ Online □ Hybrid □
Course Type	Compulsory \boxtimes Elective \square
Lecturer(s)	Prof. Dr. Yalçın Ata
Course Objectives	To equip students with a comprehensive understanding of fundamental electrical circuit concepts and analytical techniques, including Ohm's and Kirchhoff's laws, Thevenin and Norton equivalent circuits, and nodal and mesh analyses. The course emphasizes the analysis of first- and second-order circuits, operational amplifiers, and the use of phasor domain representation for sinusoidal steady-state analysis. Through problem-solving and practical applications, students will develop the foundational skills required for advanced topics in electrical engineering.
Course Content	This course covers the fundamental principles of electrical circuit analysis, including charge, current, voltage, and power concepts, as well as the behavior of resistors, capacitors, and inductors. Topics include Ohm's Law, Kirchhoff's Laws, node voltage and mesh current methods, Thevenin and Norton equivalents, and network theorems such as superposition and maximum power transfer. The course also introduces operational amplifiers, including inverting, non-inverting, and summing configurations. Analysis of first- and second-order circuits is performed in both the time domain and frequency domain, with an emphasis on transient and sinusoidal steady-state responses. Additional topics include phasor domain representation, impedance, power calculations in AC circuits.
Course Method/ Techniques	Lecture \boxtimes Question & Answer \boxtimes Presentation \square Discussion \square
Prerequisites/ Corequisites	

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman NoMF.FR.003Revizyon Tarihi13.11.2024Revizyon No01Sayfa No2 / 5

Work Placement(s)

Textbook/References/Materials

_

- Electric Circuits, Global Edition, 10th Edition, (Pearson) James W. Nilsson, Susan Riedel, 2015
- Fundamentals of Electric Circuits, (McGraw Hill) by Charles Alexander, Matthew Sadiku, 2017.
- Electric Circuits, (McGraw Hill), Schaum's Outlines, 7th ed., Mahmood Nahvi, Joseph A. Edminister, 2018

Course Category			
Mathematics and Basic Sciences		Education	
Engineering	\boxtimes	Science	
Engineering Design		Health	
Social Sciences		Profession	

Weekly Sc	hedule	
No	Topics	Materials/Notes
1	Introduction to Electrical Circuits	Ch. 1 (Nilsson)
2	Resistive Circuits; Sources; measurement equipments	Ch. 2,3
3	Linearity; Nodal Analysis	Ch. 3,4
4	Nodal Analysis; Mesh Analysis	Ch.4
5	Thevenin's and Norton's theorems;	Ch.4
6	Thevenin's and Norton's theorems; Power Transfer; Superposition	Ch.4
7	Op-Amps	Ch.5
8	Midterm Exam	-
9	Analysis of resistive Op-Amp circuits	Ch.5
10	Energy-Storage Elements	Ch.6
11	First-Order Circuits	Ch. 7
12	First-Order Circuits	Ch. 7
13	Second-Order Circuits	Ch. 8
14	Second-Order Circuits	Ch.8
15	Sinusoidal Steady-State Analysis	Ch.9
16	Final Exam	-

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	3 / 5

Assessment Methods and Criteria			
In-term studies	Quantity		Percentage
Attendance			
Lab			
Practice			
Fieldwork			
Course-specific internship			
Quiz/Studio/Criticize			
Homework	3		10%
Presentation / Seminar			
Project			
Report			
Seminar			
Midterm Exam	2		50%
Final Exam	1		40%
		Total	100%
Contribution of Midterm Studies to Success Grade			60%
Contribution of End of Semester Studies to Success Grade			40%
		Total	100%

ECTS Allocated Based on Student Workload									
Activities	Total Workload								
Course Hours	16	4	64						
Lab									
Practice									
Fieldwork									
Course-specific Work Placement									
Out-of-class study time									
Quiz/Studio/Criticize									
Homework	3	5	15						
Presentation / Seminar									
Project									
Report									
Midterm Exam and Preparation for Midterm	2	10	20						
Final Exam and Preparation for Final Exam	1	15	15						
Total Workload			114						
Total Workload / 25			4.56						
ECTS Credit			5						

FACULTY OF ENGINEERING COURSE SYLLABUS FORM

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	4 / 5

Course Le	earning Outcomes
No	Outcome
L1	Interpreting the basic circuit concepts, such as voltage, current, power, energy, etc.
L2	Using node and mesh analyses methods for the analysis of linear time invariant circuits.
L3	Analyzing circuits by utilizing Thevenin's and Norton's theorems.
L4	Analyzing circuits with operational amplifiers.
L5	Interpreting the operation of capacitors and inductors; and analyzing both transient and steady- state response of first order circuits.
L6	Analyzing second order circuits.
L7	Identifying the concept of phasor; and applying it for the AC steady-state analysis of circuits.

Contribu	ition of	f Coui	rse Le	arnin	g Out	come	es to P	Progra	nm Co	mpet	encies/	Outcome	S	
Contribut	ion Lev	el: 1:	Very S	light, 2	2: Sligi	ht, 3: I	Moder	ate, 4:	Signi	ificant,	5: Very	Significan	t	
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11			Total
L1	4	5	4	3	3	1	Х	Х	Х	Х	Х			-
L2	4	4	3	4	3	1	Х	Х	Х	Х	Х			-
L3	4	5	3	4	2	1	Х	Х	Х	Х	Х			-
L4	4	4	4	3	2	1	Х	Х	Х	Х	Х			-
L5	4	4	4	2	1	1	Х	Х	Х	Х	Х			-
L6	4	4	4	2	1	1	Х	Х	Х	Х	Х			-
L7	4	3	3	2	1	1	Х	Х	Х	Х	Х			-
									•			•	Total	-

i. Sufficient knowledge in the fields of mathematics, natural sciences, and related engineering disciplines; the ability to apply theoretical and practical knowledge in solving complex engineering problems.

ii. The ability to identify, formulate, and solve complex engineering problems; the ability to select and apply appropriate analysis and modeling methods for this purpose.

iii. The ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; the ability to apply modern design methods for this purpose.

iv. The ability to select and use modern techniques and tools required for the analysis and solution of complex problems encountered in engineering applications; the ability to effectively use information technologies.

v. The ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for the investigation of complex engineering problems or discipline-specific research topics.

vi. The ability to work effectively in intra-disciplinary and multidisciplinary teams; the ability to work independently.

vii. The ability to communicate effectively both orally and in writing; proficiency in at least one foreign language; the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and understandable instructions.

viii. Awareness of the necessity of lifelong learning; the ability to access information, track developments in science and technology, and continuously renew oneself.

ix. Acting in accordance with ethical principles, knowledge of professional and ethical responsibilities, and the standards used in engineering applications.

x. Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.

xi. Knowledge of the impact of engineering practices on health, environment, and safety at global and societal levels, and awareness of contemporary engineering issues; awareness of the legal consequences of engineering solutions.